

Metric is simple

Metric Seminar from Bossard

Prepared by B. Marbacher revised 09-06

The international Market place

- US-companies have manufacturing facilities overseas.
- Overseas companies have manufacturing facilities in the US.

 US companies are involved in international projects.

- Work is being sub-contracted internationally. (Companies in 2, 3 or more countries are involved)
- Subassemblies are often made in different parts of the

METRIC SYSTEM

Entire world, except.....

METRIC SYSTEM:

- FACILITATES INTERNATIONAL COMMUNICATION & TRADE.
- ENABLES INTERCHANGEABILITY OF PRODUCTS
- MAKES IT EASIER TO SERVICE & MAINTAIN US-MADE PRODUCTS.
- MAKES US-MADE PRODUCTS EASIER SELLABLE OVERSEAS.

THE METER

Basic unit : 1 meter

Original Definition:

Advantages of Metric System:

- Simple
- Logical
- Makes it easier to be accurate
- Enables interchangeability
- Applied by (almost) all Nations

METRIC SYSTEM

Common metric prefixes

G	(giga)	=	1 000 000 000
Μ	(mega)	=	1 000 000
k	(kilo)	=	1 000
h	(hecto)	=	100
С	(centi)	=	1/100
m	(milli)	=	1/1000
μ	(micro)	=	$\frac{1}{1000000}$

Examples:

1 Mt	(1 MEGATON)	=	1 000 000 t
1 kg	(1 KILOGRAM)	=	1 000 g
1 μm	(1 MICROMETER)	$= \frac{1}{1}$, 000000 m

Metric system

Multiples & sub-multiples of 10

Hex cap screw M6 x 100

Pitch =1 mm

Examples:		
1 m (meter)	10	dm (decimeter)
	100	cm (centimeter
	1 000	mm (millimeter)
	1 000 000	μ m (micrometer)

Use of Metric Unit Symbols

mm for dimensions in the mechanical field (on drawings)

μ**m** for

- Precision tolerances
- Plating thicknesses,
- Surface

roughnesses

INCH FASTENERS TO METRIC FASTENERS

DIAMETER

1ST POSSIBILITY:

1 INCH = 25.4 mm

3/4" MEANS 3/4 OF 25.4

FOR 1/4 " DEVIDE **25.4** BY 4 = **6.35** mm

FOR 3/4 " THEN MULTIPLY 6.35 BY 3 = 19.05 mm

2ND POSSIBILITY:

3/4 " = .750 " MULTIPLY .750 X 25.4 = <u>19.05 mm</u>

NEXT COMMON METRIC BOLT DIAMETER = M 20

INCH FASTENERS TO METRIC FASTENERS

LENGTH:

4" = 4 X 25.4 = <u>101.6mm</u> CHOOSE <u>100 mm</u>

SIZE COMPARISON:

Metric	Inch	Pitch
sizes	sizes	
M 3	4-40	0.5
M 3.5	6-32	0.6
M 4	8-32	0.7
M 5	10-24	0.8
M 6	1/4	1
M 7	1	1
M 8	5/16	1.25
M 10	3/8	1.5
M 12	1/2	1.75

FINALLY, CHECK WHETHER FASTENERS MEET THE STRENGTH REQUIREMENTS.

YIELD LOAD COMPARISON

EXCERPTS FROM TECHNICAL SECTION OF BOSSARD CATALOG

					Yi	eld load <mark>(kN</mark>	in kN: A <mark>= 224.8 I</mark>	s x Rp 0 <mark>bs.)</mark>	.2
Thread	Major	Stress	Thread	Stress	SAE	4.6	4.8	<mark>SAE</mark>	<mark>8.8</mark>
size	diam.	area	size	area	Grade			Grade	
	mm ²	mm ²		mm ²	2			<mark>5</mark>	
d	d 1	As	d	As					
5-40	3.175	5.14	M3	5.03	2.02	1.21	1.71	<mark>3.26</mark>	3.22
6-32	3.505	5.86	M3.5	6.78	2.30	1.63	2.31	<u>3.72</u>	4.34
8-32	4.166	9.04	M4	8.78	3.55	2.11	2.99	5.74	5.62
10-24	4.826	11.31	M5	14.20	4.45	3.41	4.83	<mark>7.18</mark>	<mark>9.09</mark>
1/4-20	6.350	20.50	M6	20.10	8.06	4.82	6.863	13.01	<mark>12.86</mark>
5/16-18	7.938	33.80	M8	36.60	13.29	8.78	12.44	<mark>21.45</mark>	23.42
3/8-16	9.525	50.00	M10	58.00	19.66	13.92	19.72	<u>31.72</u>	37.12

METRIC MASS (WEIGHT)

Metric Mass (weight) is indicated in kilograms (kg)

<u>Definition:</u> 1 cubic decimeter (1 dm³) of water at 4° C

has

a mass of 1 kilogram

1 kilogram water = 1 liter

- 1 kilogram mass remains constant regardless:
- \Rightarrow on EARTH, SPACE or on other planet.
- \Rightarrow in BRAZIL or USA
- \Rightarrow in MIAMI or SEATTLE

1 kilogram (kg) = 2.204 pounds (lb.)

"Metric" force - quick reference

METRIC SYSTEM

Strength

1 newton per square millimeter = 1 mega pascal 1 N/mm² = 1 MPa

1 MPa (N/mm²) = approx. 145 psi

Torque:

ISO TOLERANCES

Tolerance system for **LIMIT & FITS**

Tolerance system = key to interchangeability

Used for numerous applications

TOLERANCES ARE INDICATED BY:

Tolerance zones

H7, H12, m6, h6, h8,

Charts are available per ANSI, ISO, DIN

Tolerance Symbol

CAPITOL LETTERS H7

for INTERNAL FEATURES

small case letters **m6** for external features

The <u>bigger</u> the NUMBER the <u>bigger</u> the TOLERANCE

INTERNAL FEATURES:

Letters A - H	\Rightarrow	feature = oversized	(+ tol.)
Letters after K	\Rightarrow	feature = undersized	(- tol.)
EXTERNAL FEATURES	<u>S:</u>		
Letters a - h	\Rightarrow	feature = undersized	(- tol.)
Letters after k	\Rightarrow	feature = oversized	(+ tol .)

Example:

Hole diameter 10

shown: 10 H7 = oversized hole

Shaft diameter 10

Shown: 10 h6 = undersized shaft

10 m6 = oversized shaft

Tolerance zone

Showing position and extent of tolerance

TOLERANCES

Combination	<u>shank / hole</u>	Example:	diameter 10 mm
<u>H7 / s6</u>	10.015	0	10.032
snug fit	10.000		10.023
<u>H7 / m6</u>	10.015		10.011
drive fit	10.000		10.002
<u>H7 / h6</u> sliding fit	10.015		10.000
	10.000		9.991
<u>H7 / d9</u> loose	10.015		9.024
running fit	10.000	- <u>Y</u>	9.060

ISO TOLERANCES

ISO tolerance chart excerpts:

Nomin	al size	Tolerance zones			
over	to	h6	h8	<mark>m6</mark>	H7
0	1	0	0	+ 0.002	+ 0.010
		- 0.006	- 0.040	+ 0.008	0
1	3	0	0	+ 0.002	+ 0.010
		- 0.006	- 0.040	+ 0.008	0
<mark>3</mark>	<mark>6</mark>	0	0	<mark>+ 0.004</mark>	+ 0.012
		- 0.008	- 0.048	<mark>+ 0.012</mark>	0

=

EXAMPLE:

Metric dowel pin metric shaft

Size: 5 x 12 tolerance m6

<u>Designation:</u> \emptyset 5 m6 x 12

<u>Tolerance:</u> (millimeters) = 0.004 = min. = 5.004

0.012 = max. = 5.012

Interchangeability & Availability

Availability - Just in time

Fasteners

made to " well known "

recognized standards

• are more readily

give greater assurance for
 <u>Just in time</u> "deliveries

Metric Standards and Standard Organizations

International Organization for Standardization

Deutsches Institut fuer Normung (German Institute for Standards)

American National Standards Institute

American Society for Testing & Materials

European Committee for Standards

INTERNATIONAL ORGANIZATION FOR STANDARDIZATION

- **ISO IS** WORLD STANDARD
- ORIGINALLY PUBLISHED RECOMMENDATION
 ONLY
- NATIONAL STANDARDS INCORPORATED RECOMMENDATIONS
- SINCE MID 70'S ISO STANDARDS PUBLISHED
- MATERIAL & MECH. PROPERTIES ARE
 INCLUDED IN NATIONAL STANDARDS. (SAME)
- THREAD DIMENSIONS ALL ACC. **ISO**
- FASTENERS TO **ISO PRODUCT STANDARDS** (DIMENSIONAL REQUIREMENTS) NOT YET **ALL** READILY AVAILABLE.

DIN DEUTSCHES INSTITUT FUER NORMUNG (GERMAN INSTITUTE FOR STANDARDS)

- DIN STANDARDS RECOGNIZED & ACCEPTED
 WORLDWIDE
- USED IN INDUSTRY WORLDWIDE
- MANY DIN STANDARDS CONVERTED TO ISO STANDARDS
- STILL MANY METRIC FASTENERS
 & MACHINE COMPONENTS AVAILABLE
 PER DIN STANDARDS ONLY

- ANSI STANDARDS ALMOST IN AGREEMENT
 WITH ISO
- ANSI STANDARD NOT YET RECOGNIZED
 WORLDWIDE
- WHEN SPECIFYING **ANSI**, LIST **ISO** AND **DIN** AS
 PERMISSIBLE ALTERNATIVES

AMERICAN SOCIETY FOR TESTING & MATERIALS

- MECHANICAL PROPERTIES ALMOST IN
 AGREEMENT WITH **ISO**
- WHEN SPECIFYING ASTM, LIST ISO AND DIN AS PERMISSIBLE ALTERNATIVES

- CEN will publish EN standards (European Norm).
- EN standards based on existing ISO Standard.
- The ISO mechanical standards agree with EN standards.
- After the introduction of EN-standards, **European National standards** to be phased out.

INTERCHANGEABILITY

Worldwide

DIFFERENT WAF

		Size	
Standard ↓	M10	M12	M14
ISO & ANSI	16	18	21
DIN	17	19	22

Smaller heads (WAF) per ISO & ANSI standards cause some what higher strains on clamped material.

Difference in <u>WAF</u> may cause *problems* in the assembly if screws are mixed.

MACHINE SCREWS WITH CROSS RECESSES

Difference in Drive sizes

Philips drive

Pozidriv

Size	M2	M2.5	M 3	M3.5	M 4	M 5
Standard						
ISO	0	1		2		
DIN		1			2	
ANSI	0	1		2		
JIS		1		2	2	

Difference if drive sizes could possible cause problems in the assembly.

METRIC THREAD

Metric thread falls between inch coarse / inch fine thread

Metric coarse thread = Standard thread

M10 M = metric thread 10 = nom. diameter

<u>Metric fine thread = special</u>

M10 x 1 M = metric thread 10 = diameter 1 = Pitch Indicate pitch only for metric fine thread

PREFERRED METRIC THREAD SIZES & LENGTHS

Prefer (Pr	ence cl ef. Dia	asses m.)	Pit	ch
1	2	3	Coarse (standard)	Fine
M3			0.5	
	M3.5		0.6	
M4			0.7	
M5			0.8	
M6			1	
		M7	1	
M8			1.25	1
		M9	1.25	
M10			1.5	1.25 (1)
		M11	1.5	
M12			1.75	1.25 (1.5)
M14	M14		2	1.5
M16			2	1.5
	M18		2.5	1.5
M20			2.5	1.5

Preferred Length					
Nominal Le	ength (mm)	Increment of:			
>	\leq				
	6	1 mm			
6	20	2 mm			
20	50 (75)	5 mm			
50	160	10 mm			
160	300	20 mm			
300		40 mm			

METRIC THREAD TOLERANCES

Thread tolerance for metric external thread

Standard bolt thread tolerance, comparable to inch thread tolerance 2A

Thread tolerance for metric internal thread

Standard Nut thread tolerance, comparable to inch thread tolerance 2B

Thread tolerance 5g6g (4g6g)

METRIC FASTENERS

Identifying metric bolts

Metric Mechanical Property Classes

Class	Ref.	Min. Yield Str. MPa	Min. Tensile Str. MPa	Factor	Min. Yield Str. psi	Min. Tensile Str. psi
4.8		340	420	145	49300	60900
5.8	Gr. 2	420	520	145	60900	75400
8.8	Gr. 5					
≤ M16		640	800	145	92800	116000
> M16		660	830	145	95700	120350
9.8	over Gr. 5	720	900	145	104400	130500
10.9	Gr. 8	940	1040	145	136300	150800
12.9	ref. ASTM A 574	1100	1220	145	159500	176900

METRIC FASTENERS

Interpretation of metric property class markings

Marking:

- 10 x 100 = 1000 N/mm2 (MPa)
 - = tensile strength (nominal)
- $10 \times 0.9 \times 100 = 900 \text{ N/mm2} (\text{MPa})$
 - = yield strength (nominal)

Factor to convert to psi = 145

NUTS

10 x 100 = 1000 N/mm2 (MPa) = proof stress

Property class of **nut** always equal or higher the property class of **bolt**

Metric Stainless Steel Fasteners

Stainless steels for Metric fasteners are grouped into 3 material groups:

- Austenitic
- Ferritic
- Martensitic

98% of Metric Fasteners are made from austenitic stainless steels.

Austenitic group:

Divided into 3 sub-groups:

A2 A4 A1

Austenitic group

8 - 13% Nickel

Nicknamed: " 18 / 8 "

AISI 304 / 321 meet requirement of A2

-) = 16 18.5% Chromium
 - 10 14% Nickel

2 - 3% Molybdenum

Offers high corrosion resistance 2 - 3% molybdenum alleviates risk of pitting

AISI 316 meets requirement of A4

A1 = A2 with added sulfur = free machineable

Definitions per ISO and DIN

Stainless steel property class

Mechanical property indicated by numbers

A2- 50 d	A4- 50	 when machined larger sizes, generally above M20 and/or length above 8 x
A2-70	A4-70	readily available
A2-80	A4- 80 	special
A2 - 7	0	of tensile strength IPa (N/mm ²)

PROPER METRIC FASTENER DESCRIPTION

Or use

BN numbers

Example:

BN number 54 = Hex cap screw DIN 933 property class 8.8 black

Think Global

Think Metric